PENGARUH PEMBERIAN FERMENTASI EM- 4 DAN ENZIMATIS BATANG PISANG (MUSA PARADISIACA) TERHADAP KANDUNGAN PROTEIN DAN FRAKSI SERAT KASAR
Main Article Content
Agni Ayudha Mahanani
Rifa’i
This study aimed to evaluate the impact of EM4 and Cellulase Enzyme supplementation on the crude protein content and crude fiber fractions (crude fiber, NDF, ADF, hemicellulose) of banana stems. The research was conducted at the Animal Husbandry Laboratory, Universitas Sulawesi Barat, with nutritional analyses performed at Si Cinta Feed Laboratory from July to August 2024. The study involved two distinct stages, each comprising five treatments, including a control group. EM4 and cellulase enzyme concentrations varied from 0.25% to 1%. A Completely Randomized Design (CRD) with five replicates was utilized, and data were analyzed using ANOVA followed by Duncan's multiple range test. Results indicated that EM4 supplementation significantly (P<0.01) increased crude protein and reduced fiber fractions. An optimal EM4 dosage of 0.75% yielded the best outcomes, decreasing crude fiber (9.05%), NDF (46.56%), ADF (29.9%), and hemicellulose (16.66%), while simultaneously increasing crude protein (7.1%). Similarly, cellulase enzyme treatment demonstrated a significant effect (P<0.01), enhancing crude protein and reducing fiber. The 0.75% enzyme dosage produced the lowest crude fiber (6.98%), NDF (40.20%), ADF (24.8%), and hemicellulose (15.4%) levels, alongside the highest crude protein content (8.87%). This research suggests the promising potential of EM4 and cellulase enzymes in enhancing the nutritional value of banana stems for feed.
Afifah, I., and H. M. Sopiany. 2017. “Penurunan Produksi Gas MetanaDari Cairan Rumen Kerbau Dengan Substrat Jerami SorgumMenggunakan Bakteri Denitrifikasi Aktif Dan Inaktif.” 87(1,2): 149–200.
Asriany, A., , I., & Islamiyati, R. (2020). Nutritive value of banana stem with applicative technology Trichoderma sp. as ruminant feed. IOP Conference Series: Earth and Environmental Science, 492. https://doi.org/10.1088/1755-1315/492/1/012016.
Banerjee, P., Sutaoney, P., Sinha, S., Choudhary, R., Singh, S., Gupta, A., & Rai, S. (2024). Current perspective in research and industrial applications of microbial cellulases.. International journal of biological macromolecules, 130639. https://doi.org/10.1016/j.ijbiomac.2024.130639.
Duan, Y., Liu, S., Wang, J., Shang, Z., Bao, C., Dong, B., & Cao, Y. (2022). Complete genome sequencing and investigation on the fiber-degrading potential of Bacillus amyloliquefaciens strain TL106 from the tibetan pig. BMC Microbiology, 22. https://doi.org/10.1186/s12866-022-02599-7.
Fu, J., Zhu, L., Jin, M., Li, Z., Xu, B., & Wang, Y. (2019). Overall assessment of fermented feed for pigs: a series of meta-analyses.. Journal of animal science. https://doi.org/10.1093/jas/skz350.
Fu, Z., Wang, Y., Zhong, J., Liu, S., Wang, T., Jin, S., Hu, J., Yun, F., Xia, T., Tahir, M., Zhang, X., Teng, K., & Wang, S. (2024). Lactobacillus cocktail and cellulase synergistically improve the fiber transformation rate in Sesbania cannabina and sweet sorghum mixed silage. Chemical and Biological Technologies in Agriculture. https://doi.org/10.1186/s40538-024-00605-w.
Granada, C., Domingues, S., & Timmers, L. (2022). Cellulase production by bacteria is a strain-specific characteristic with a high biotechnological potential. A review of cellulosome of highly studied strains. Cellulose, 29, 8065 - 8083. https://doi.org/10.1007/s10570-022-04790-5.
H., Aziez, A., & Priyadi, S. (2024). Addition To Green-Based Feed Preparations With Fermentation Technology Innovation Good Ruminant Feeding Practices. Journal of Community Capacity Empowerment. https://doi.org/10.36728/jcce.v2i1.3113.
H., Ginting, N., & Hidayat, S. (2022). Effect of Fermentation Duration and Dosage of Eco Enzyme Use on Nutrient Content of Kepok Banana Stem (Musa Paradisiaca L.). Jurnal Peternakan Integratif. https://doi.org/10.32734/jpi.v9i3.7579.
Indah, Andi Sukma. 2016. “Kandungan Protein Serat Kasar Dan Serat Kasar Silase Pakan Lengkap Berbahan Utama Batang Pisang (Musa Paradisiaca) Dengan Lama Inkubasi Yang Berbeda.” Skripsi 15(1): 165–75. https://core.ac.uk/download/pdf/196255896.pdf.
Islam, S., Siddik, M., Francis, D., & Julien, B. (2024). Fermentation in aquafeed processing: Achieving sustainability in feeds for global aquaculture production. Reviews in Aquaculture. https://doi.org/10.1111/raq.12894.
Kosugi, A., Inui, M., Yukawa, H., Cho, H., Doi, R., & Koukiekolo, R. (2005). Degradation of Corn Fiber by Clostridium cellulovorans Cellulases and Hemicellulases and Contribution of Scaffolding Protein CbpA. Applied and Environmental Microbiology, 71, 3504 - 3511. https://doi.org/10.1128/AEM.71.7.3504-3511.2005.
Krishnan, M., Saharay, M., & Penneru, S. (2022). CelS-Catalyzed Processive Cellulose Degradation and Cellobiose Extraction for the Production of Bioethanol. Journal of chemical information and modeling. https://doi.org/10.1021/acs.jcim.2c00239.
Lin, B., Zhang, H., Liu, Y., Yi, C., & Quan, K. (2020). Chemical composition, structure, physicochemical and functional properties of rice bran dietary fiber modified by cellulase treatment.. Food chemistry, 128352. https://doi.org/10.1016/j.foodchem.2020.128352.
Mahanani, A A, I H Djunaidi, and O Sjofjan. 2020. “Nutrient Content of Cocoa Husk by Cellulose Treatment.” Research Journal of Advanced … 5(1): 270–73. http://irjaes.com/wp- content/uploads/2020/10/IRJAES-V5N1P262Y20.pdf.
Min, Y., Li, J., Liu, Y., Guo, L., Feng, J., Lv, J., & Wang, Y. (2021). Fermented Corn–Soybean Meal Mixed Feed Modulates Intestinal Morphology, Barrier Functions and Cecal Microbiota in Laying Hens. Animals : an Open Access Journal from MDPI, 11. https://doi.org/10.3390/ani11113059.
Muhammad Ridhwan. 2019. “Kandungan Fraksi Serat Silase Tanaman Kiambang (Salvinia Molesta) Yang Difermentasi Dengan Efektive Microorganisme (EM4) Dengan Level Yang Berbeda.” skripsi.Program Studi Peternakan.Fakultas Pertanian Dan Peternakan.Universitas Islam Negeri Sultan Syarif Kasim Riau Pekanbaru.
Muhfahroyin, M., Devri, A., & Santoso, H. (2020). MANFAAT BATANG PISANG DAN AMPAS TAHU SEBAGAI PAKAN KONSENTRAT TERNAK SAPI. BIOLOVA. https://doi.org/10.24127/biolova.v1i1.33.
Mukherjee, R., Dutta, A., & Chakraborty, R. (2015). Role of Fermentation in Improving Nutritional Quality of Soybean Meal — A Review. Asian-Australasian Journal of Animal Sciences, 29, 1523 - 1529. https://doi.org/10.5713/ajas.15.0627.
Pratama, J. 2014. “Kandungan ADF, NDF Dan Hemiselulosa Pucuk Tebu (Saccharumofficinarum L) Yang Difermentasi Dengan Kalsium Karbonat, Urea Dan Molases.” Fakultas Peternakan Universitas Hasanuddin Makasar, Makasar. doi:10.3390/ani11061713.
Purwaka, Muhammad Imam, Syarifuddin, N, A, Habibah, H, Rizqiana, and S. 2024. “Kandungan Fraksi Serat Silase Batang Pisang Kepok (Musa Paradisiaca Acuminata Balbisiana) Yang Diberi Effective Microorganism 4 (Em4) Pada Level Yang Berbeda.” JURNAL PENELITIAN PETERNAKAN LAHAN BASAH 4(2): 29–36.
Putra, B., Handayani, U., Narwastu, A., Endayani, A., & Sanjaya, R. (2023). Banana Waste (Musa acuminata Cavendish Subgroup) as A Sources Eco-Feed for Ruminants in Lampung Province: Potential and Nutrient Content. JURNAL ILMIAH PETERNAKAN TERPADU. https://doi.org/10.23960/jipt.v11i2.p106-120.
Putri, Pramisti Wildany. 2020. “Kandungan Neutral Detergent Fibre (NDF), Acid Detergent Fibre (ADF), Hemiselulisa, Selulosa Dan Lignin Onggok Yang Difermentasi Trichoderma Reesei Dengan Suplementasi N, S, P.” Bulletin of Applied Animal Research 2(1): 33–37. doi:10.36423/baar.v2i1.227.
Ranjitkar, S., & Sugiharto, S. (2018). Recent advances in fermented feeds towards improved broiler chicken performance, gastrointestinal tract microecology and immune responses: A review. Animal Nutrition, 5, 1 - 10. https://doi.org/10.1016/j.aninu.2018.11.001.
Reza, A., Rozi, A., Falih, A., & Azar, M. (2022). PEMANFAATAN BATANG PISANG SEBAGAI PAKAN TERNAK. Jurnal Pengabdian Masyarakat : BAKTI KITA. https://doi.org/10.52166/baktikita.v3i1.3143.
Roy, R., Banerjee, S., & Maiti, T. (2020). Production, purification, and characterization of cellulase from Acinetobacter junii GAC 16.2, a novel cellulolytic gut isolate of Gryllotalpa africana, and its effects on cotton fiber and sawdust. Annals of Microbiology, 70. https://doi.org/10.1186/s13213-020-01569-6.
Santos, Dos, Tamires Carvalho, Gomes, D, P, P, Bonnomo, et al. 2012. “Optimisation of Solid State Fermentation of Potato Peel for the Production of Cellulolytic Enzymes.” Food Chemistry 133(4): 1299–1304. doi:10.9775/kvfd.2019.21721.
Seel-Audom, M., Arjin, C., Souphannavong, C., Mekchay, S., Sartsook, A., & Sringarm, K. (2020). Efficiency of Fresh and Fermented Banana Stem in Low Protein Diet on Nutrient Digestibility, Productive Performance and Intestinal Morphology of Crossbred Pig ((Thai native x Meishan) x Duroc). Veterinary Integrative Sciences. https://doi.org/10.12982/vis.2021.005.
Seelich, K., Zajki-Zechmeister, K., Eibinger, M., Nidetzky, B., & Kaira, G. (2021). Processive Enzymes Kept on a Leash: How Cellulase Activity in Multienzyme Complexes Directs Nanoscale Deconstruction of Cellulose. ACS Catalysis, 11, 13530 - 13542. https://doi.org/10.1021/acscatal.1c03465.
Tóth, T., Katu, J., & Varga, L. (2025). Enhancing the Nutritional Quality of Low-Grade Poultry Feed Ingredients Through Fermentation: A Review. Agriculture. https://doi.org/10.3390/agriculture15050476.
Wang, C., Hou, R., Mao, X., Li, L., Qiu, X., & Liu, J. (2023). Improvement of soybean meal quality by one-step fermentation with mixed-culture based on protease activity. Innovative Food Science & Emerging Technologies. https://doi.org/10.1016/j.ifset.2023.103311.
Zhao, Y., Yang, Y., Cao, G., Rong, X., Li, H., Wu, Y., Ji, M., Zhao, X., Guo, X., & Li, B. (2025). Effects of Fermented Liquid Feed with Compound Probiotics on Growth Performance, Meat Quality, and Fecal Microbiota of Growing Pigs. Animals : an Open Access Journal from MDPI, 15. https://doi.org/10.3390/ani15050733.